Small Business Innovation Research/Small Business Tech Transfer

Lightweight, Advanced Sorbent-Based Device to Collect and Pressurize CO2 from Martian Atmospheres, Phase I

Completed Technology Project (2014 - 2014)

Project Introduction

Human exploration of Mars, as well as unmanned sample return missions can benefit greatly from use of propellants and life-support consumables produced from the resources available on Mars. The first major step of any in-situ propellant production system is the acquisition of carbon dioxide from the Mars atmosphere and its compression for further chemical processing. TDA Research Inc. proposes to develop a compact, lightweight, advanced sorbentbased compressor to recover high-pressure, high purity CO2 from the Martian atmosphere. The system eliminates the need for a mechanical pump, increasing the reliability with relatively low power consumption. TDA's system uses a proprietary sorbent that selectively adsorb CO2 at 0.1 psia and regenerates by temperature swing, producing a continuous, high purity CO2 flow at pressure (> 15 psia). The objective of this Phase I research is to develop a high capacity, regenerable CO2 adsorbent that maintains its CO2 capacity and mechanical integrity over extended adsorption/desorption cycles. We will optimize the sorbent formulation and conduct a minimum of 100 complete adsorption/regeneration cycles for our best sorbent formulation. We will carry out a design of the adsorbent-based CO2 compressor and demonstrate the technical feasibility of the concept and quantify the logistics savings.

Primary U.S. Work Locations and Key Partners

Lightweight, Advanced Sorbent-Based Device to Collect and Pressurize CO2 from Martian Atmospheres Project Image

Table of Contents

Project Introduction	1
Primary U.S. Work Locations	
and Key Partners	1
Project Transitions	2
Images	2
Organizational Responsibility	2
Project Management	2
Technology Maturity (TRL)	2
Technology Areas	3
Target Destinations	3

Small Business Innovation Research/Small Business Tech Transfer

Lightweight, Advanced Sorbent-Based Device to Collect and Pressurize CO2 from Martian Atmospheres, Phase I

Completed Technology Project (2014 - 2014)

Organizations Performing Work	Role	Туре	Location
TDA Research, Inc.	Lead Organization	Industry	Wheat Ridge, Colorado
Glenn Research Center(GRC)	Supporting Organization	NASA Center	Cleveland, Ohio

Primary U.S. Work Locations	
Colorado	Ohio

Project Transitions

0

June 2014: Project Start

December 2014: Closed out

Closeout Documentation:

• Final Summary Chart(https://techport.nasa.gov/file/137689)

Images

Project Image

Lightweight, Advanced Sorbent-Based Device to Collect and Pressurize CO2 from Martian Atmospheres Project Image (https://techport.nasa.gov/imag e/125974)

Organizational Responsibility

Responsible Mission Directorate:

Space Technology Mission Directorate (STMD)

Lead Organization:

TDA Research, Inc.

Responsible Program:

Small Business Innovation Research/Small Business Tech Transfer

Project Management

Program Director:

Jason L Kessler

Program Manager:

Carlos Torrez

Principal Investigator:

Ambalavanan Jayaraman

Technology Maturity (TRL)

Small Business Innovation Research/Small Business Tech Transfer

Lightweight, Advanced Sorbent-Based Device to Collect and Pressurize CO2 from Martian Atmospheres, Phase I

Completed Technology Project (2014 - 2014)

Technology Areas

Primary:

- TX07 Exploration Destination Systems
 - ☐ TX07.1 In-Situ Resource Utilization
 - ☐ TX07.1.2 Resource
 Acquisition, Isolation,
 and Preparation

Target Destinations

The Sun, Earth, The Moon, Mars, Others Inside the Solar System, Outside the Solar System

